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Abstract 

 

 In this study, we propose a deep learning-based voxel-based dosimetry method in which dose maps acquired using the multiple 

voxel S-value approach were used for residual learning. 22 SPECT/CT images from seven patients who underwent 177Lu-

DOTATATE treatment were used in this study. The dose maps generated from Monte Carlo simulations were used as the reference 

approach and target images for network training. The multiple VSV approach was used for residual learning and compared with 

dose maps generated from deep learning. The conventional 3D U-Net network was modified for residual learning. DL-based 

dosimetry provided a slightly more accurate estimation than the multiple-VSV approach, but the results were not statistically 

significant. This difference was prominent in the error maps. The multiple VSV approach underestimated doses in the low-dose 

range, but it accounted for the underestimation when the DL-based approach was applied. In conclusion, the proposed deep 

learning network is useful for accurate and fast dosimetry after radiation therapy using 177Lu labeled radiopharmaceuticals. 

 
1. Background 

177Lu-octreotate (177Lu-DOTATATE) peptide receptor 

radionuclide therapy is used to treat patients with metastatic 

neuroendocrine tumors (NETs). Since the peptide receptor has high 

efficacy for tumor targeting and the therapy has low side effects and 

good therapeutic efficacy. However, retrospective dosimetry is 

needed to ensure efficient and accurate treatment.  

Several approaches for voxel-based dosimetry using DL has been 

reported [1-4]. In this study, a U-net-based network for voxel-based 

dosimetry was proposed to enhance accuracy. In particular, dose maps 

acquired using the multiple VSV approach were used for residual 

learning. The proposed network was validated by comparison with 

MC simulations and the multiple VSV approach. 

 

2. Materials and Methods 

2-1. Image acquisition 

The 22 sets of SPECT/CT data from 7 patient who underwent 177Lu-

DOTATATE therapy at Seoul National University Hospital were used 

in this study. SPECT/CT images were acquired 4, 24, 48, and 120 h 

after intravenous injection of 177Lu-DOTATATE.  

 

2-2. MC simulation 

The dose maps generated from the MC simulation were used as the 

reference and target images for network training. Geant4 Application 

for Emission Tomography (GATE) v.8.2 was used for the simulation. 

The CT images were resampled to have same voxel sizes as that of the 

SPECT image. Co-registration of sequential SPECT/CT images was 

performed to generate time-integrated activity (TIA) maps. The TIA 

maps were acquired using a voxel-wise trapezoidal sum as:  
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, where 𝐴𝑖  is the activity (𝐴0 00) in each voxel of i-th SPECT 

images acquired at 𝑡𝑖, ∆t_i0𝑡𝑖+1-𝑡𝑖, and λ is the physical decay factor 

of 177Lu. Patient-specific phantom images derived from the CT image 

and TIA map for the voxelized source were used as input files for the 

simulation 

 

2-3. Multiple VSV approach 

 The multiple VSV approach was used for residual learning and 

comparison compared with dose maps generated from DL. In this 

study, the multiple VSV approach with 20 kernels was used for 

dosimetry. The single-VSV approach has also been used for dosimetry. 

By contrast, the multiple-VSV approach comprises four steps: (1) 

generation of VSV kernels using MC simulation, (2) convolution of 

the TIA map with each VSV kernel, (3) masking each medium-

specific dose map with the corresponding medium mask map, and (4) 

summation of all masked dose maps to generate the final dose map.  

 

2-4. DL approach 

The conventional 3D U-net network was modified for residual 

learning, as illustrated in Fig. 1. 3D patch-based supervised learning 

was performed by considering the size of the network, which took CT 

and TIA patch images with a size of 64 × 64 × 64 as inputs, and was 

trained to yield a dose map. Each encoding layer comprised two 3 × 3 

× 3 convolution layers and a 2 × 2 × 2 max-pooling layer. The 

decoding layer comprised one 3 × 3 × 3 convolution layer, a 

concatenating path, and two 3 × 3 × 3 convolution layers. Each 

convolution layer was followed by batch normalization and rectified 

linear unit (ReLU) activation function. The number of feature maps in 

the first layer was set to 16 via empirical fine-tuning. It was then 

doubled as it passed through the encoding layer, and reduced by half 

as it passed through the decoding layer. After passing through all the 

 
Fig. 1. Modified 3D U-net structure for residual learning 



layers, the feature maps were contracted to one image by a 1 × 1 × 1 

convolution, and the image was then summated with a multiple VSV 

dose map for the residual learning. The multiple VSV dose map using 

20 VSV kernels was used. 

The network was trained and tested using a cross-validation 

strategy with 7-fold, the same as the number of patients. Therefore, all 

22 SPECT/CT data set were used for the training and validation of the 

network. Each SPECT and CT dataset was split into 125 patches of 

size 64 × 64 × 64, forming one dataset for training and testing. The L1 

loss between the dose map from the MC simulation and the network 

was estimated for training. An adaptive moment optimizer was used 

to minimize loss.  

 

3. Results 

The absorbed doses of organs estimated using different approaches 

are summarized in Table 1. DL-based dosimetry provided a slightly 

more accurate estimation than the multiple VSV approach but was not 

statistically significant. The single VSV approach especially yielded 

high error for bone marrow and tumor regions where the medium 

properties of the regions were different than that of water. 

Fig. 2 shows the dose maps generated using each approach and 

corresponding relative and absolute error maps from SPECT/CT 

images of a 74-year-old male patient diagnosed with rectal NET. The 

dose maps generated by the single VSV approach showed large errors 

in the regions. On the other hand, the multiple VSV and DL-based 

approaches provided similar dose maps compared to the MC 

simulation as shown in the difference maps. However, the errors in 

voxel level were minimal at the lung-liver interface regions, kidneys, 

spleen, and tumors in the liver when the DL-based approach was used. 

Fig. 3 shows dose-line profiles of each approach acquired using 

SPECT/CT images of a 63-year-old male patient diagnosed with rectal 

NET. As shown in the dose-line profile along the horizontal direction, 

the DL-based approach was almost identical to MC simulation, 

especially in the bone metastasis region.  

The voxel-wise correlations between MC and 3 different 

approaches were analyzed to observe the accuracy of each model at 

the voxel level. As shown in Fig. 4-A and D, the single VSV approach 

overestimated the doses in the high-dose range (>5 Gy), and 

underestimated the doses in the low-dose range (< 5 Gy). The multiple 

VSV approach underestimated doses in the low-dose range, as shown 

in Fig. 6-B and E but it accounted for the underestimation when the 

DL-based approach was applied, as shown in Fig. 6-C and F. 

Furthermore, the DL-based approach had a slightly narrower plotting 

shape than that in the multiple VSV approach.  
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Fig. 2. Relative and absolute error maps of single VSV, multiple 

VSV, and DL-based approaches compared to Monte Carlo 

simulation. 

Table 1. Absorbed Dose (AD, Gy) Estimated using 4 different 

approaches (Mean ± Standard Deviation) and Mean Absolute Error 

(MAE, %) compared to Monte Carlo simulation 
AD(Gy) 

&MAE(%) 
 Kidneys 

Bone 
marrow 

Liver Spleen 
Tumor

s 

MC Dose 
6.41 ± 
1.34 

1.76 ± 
1.61 

10.00 ± 
7.29 

6.25 ± 
3.04 

15.28 ± 
12.63 

Single 
VSV 

Dose 
6.75 ± 
1.40 

1.99 ± 
1.82 

10.69 ± 
7.80 

6.62 ± 
3.32 

16.81 ± 
13.36 

MAE 5.45 11.84 6.82 9.30 13.62 

Multiple 
VSV 

Dose 
6.36 ± 
1.32 

1.78 ± 
1.64 

9.76 ± 
7.05 

6.18 ± 
2.96 

15.15 ± 
12.10 

MAE 1.56 1.21 2.79 2.28 4.66 

DL 
Dose 

6.46 ± 
1.36 

1.77 ± 
1.62 

10.02 ± 
7.28 

6.26 ± 
3.05 

15.54 ± 
12.64 

MAE 1.04 0.81 0.54 1.34 3.18 

 

 
Fig. 3. The dose-line profile of MC, single VSV, multiple VSV, 

and DL-based approaches. 

 
Fig. 4. The voxel-wise correlation between the MC and (A, D) 

single VSV approach, (B, E) the multiple VSV approach, and (C, 

F) the DL-based approach.  

 




